References and Notes
For recent reviews on catalytic
hydroamination, see:
<A NAME="RU12208ST-1A">1a</A>
Odom AL.
Dalton Trans.
2005,
225
<A NAME="RU12208ST-1B">1b</A>
Hultzsch
KC.
Adv. Synth. Catal.
2005,
347:
367
<A NAME="RU12208ST-1C">1c</A>
Hong S.
Marks TJ.
Acc. Chem. Res.
2004,
37:
673
<A NAME="RU12208ST-1D">1d</A>
Doye S.
Synlett
2004,
1653
<A NAME="RU12208ST-1E">1e</A>
Roesky PW.
Müller TE.
Angew. Chem.
Int. Ed.
2003,
42:
2708
<A NAME="RU12208ST-1F">1f</A>
Bytschkov I.
Doye S.
Eur. J. Org. Chem.
2003,
935
<A NAME="RU12208ST-1G">1g</A>
Pohlki F.
Doye S.
Chem. Soc. Rev.
2003,
32:
104
<A NAME="RU12208ST-1H">1h</A>
Alonso F.
Beletskaya IP.
Yus M.
Chem.
Rev.
2004,
104:
3079
<A NAME="RU12208ST-1I">1i</A>
Severin R.
Doye S.
Chem. Soc. Rev.
2007,
36:
1407
<A NAME="RU12208ST-1J">1j</A>
Müller TE.
Hultzsch KC.
Yus M.
Foubelo F.
Tada M.
Chem. Rev.
2008,
108:
3795
<A NAME="RU12208ST-2A">2a</A>
Trost BM.
Angew. Chem., Int.
Ed. Engl.
1995,
34:
259
<A NAME="RU12208ST-2B">2b</A>
Trost BM.
Science
1991,
254:
1471
<A NAME="RU12208ST-3A">3a</A>
Castro CE.
Stephens RD.
J. Org. Chem.
1963,
28:
2163
<A NAME="RU12208ST-3B">3b</A>
Stephens RD.
Castro CE.
J.
Org. Chem.
1963,
28:
3313
<A NAME="RU12208ST-4A">4a</A>
Xu L.
Lewis IR.
Davidsen SK.
Summers JB.
Tetrahedron Lett.
1998,
39:
5159
<A NAME="RU12208ST-4B">4b</A>
Müller TE.
Grosche M.
Herdtweck E.
Pleier AK.
Walter E.
Yan YK.
Organometallics
2000,
19:
170
<A NAME="RU12208ST-4C">4c</A>
Peng C.
Cheng J.
Wang J.
Adv.
Synth. Catal.
2008,
350:
2359
<A NAME="RU12208ST-4D">4d</A>
Müller TE.
Pleier A.-K.
J.
Chem. Soc., Dalton Trans.
1999,
583
<A NAME="RU12208ST-4E">4e</A>
Kamijo S.
Jin T.
Yamamoto Y.
Angew.
Chem. Int. Ed.
2002,
41:
1780
<A NAME="RU12208ST-4F">4f</A>
Xu L.
Lewis IR.
Davidsen SK.
Summers JB.
Tetrahedron
Lett.
1998,
39:
5159
<A NAME="RU12208ST-5A">5a</A>
Fukumoto Y.
Asai H.
Shimizu M.
Chatani N.
J.
Am. Chem. Soc.
2007,
129:
13792
<A NAME="RU12208ST-5B">5b</A>
Tzalis D.
Koradin C.
Knochel P.
Tetrahedron
Lett.
1999,
40:
6193
<A NAME="RU12208ST-5C">5c</A>
Park
YJ.
Kwon B.-I.
Ahn J.-A.
Jun C.-H.
J. Am. Chem. Soc.
2004,
126:
13892
<A NAME="RU12208ST-6A">6a</A>
Yao X.
Li C.-J.
Org.
Lett.
2005,
7:
4395
<A NAME="RU12208ST-6B">6b</A>
Wei C.
Mague JT.
Li C.-J.
Proc.
Natl. Acad. Sci. U.S.A.
2004,
101:
5749
<A NAME="RU12208ST-6C">6c</A>
Wei C.
Li C.-J.
J. Am. Chem. Soc.
2003,
125:
9584
<A NAME="RU12208ST-6D">6d</A>
Wei C.
Li Z.
Li C.-J.
Org.
Lett.
2003,
5:
4473
<A NAME="RU12208ST-6E">6e</A>
Wei C.
Li C.-J.
Green Chem.
2002,
4:
39
<A NAME="RU12208ST-6F">6f</A>
Wei C.
Li C.-J.
J. Am. Chem. Soc.
2002,
124:
5638
<A NAME="RU12208ST-6G">6g</A>
Li C.-J.
Wei C.
Chem. Commun.
2002,
268
<A NAME="RU12208ST-6H">6h</A>
Zhang J.
Wei C.
Li C.-J.
Tetrahedron
Lett.
2002,
43:
5731
<A NAME="RU12208ST-6I">6i</A>
Huang B.
Yao X.
Li C.-J.
Adv.
Synth. Catal.
2006,
348:
1528
<A NAME="RU12208ST-6J">6j</A>
Yao X.
Li C.-J.
Org. Lett.
2006,
8:
1953
<A NAME="RU12208ST-6K">6k</A>
Deng G.
Li C.-J.
Synlett
2008,
10:
1571
<A NAME="RU12208ST-6L">6l</A>
Viswanathan G.
Li C.-J.
Tetrahedron Lett.
2002,
43:
1613
For recent examples, see:
<A NAME="RU12208ST-7A">7a</A>
Asano Y.
Hara K.
Ito H.
Sawamura M.
Org. Lett.
2007,
9:
3901
<A NAME="RU12208ST-7B">7b</A>
Colombo F.
Benaglia M.
Orlandi S.
Usuelli F.
Celentano G.
J.
Org. Chem.
2006,
71:
2064
<A NAME="RU12208ST-7C">7c</A>
Arimitsu S.
Hammond GB.
J. Org.
Chem.
2006,
71:
8665
<A NAME="RU12208ST-7D">7d</A>
Gommermann N.
Koradin C.
Polborn K.
Knochel P.
Angew. Chem. Int. Ed.
2003,
42:
5763
<A NAME="RU12208ST-7E">7e</A>
Koradin C.
Gommermann N.
Polborn K.
Knochel P.
Chem. Eur. J.
2003,
9:
2797
<A NAME="RU12208ST-7F">7f</A>
Lu G.
Li X.
Chan WL.
Chan ASC.
Chem. Commun.
2002,
172
<A NAME="RU12208ST-7G">7g</A>
Chen ZL.
Xiong WN.
Jiang B.
Chem. Commun.
2002,
2098
<A NAME="RU12208ST-7H">7h</A>
Koradin C.
Polborn K.
Knochel P.
Angew.
Chem. Int. Ed.
2002,
41:
2535
<A NAME="RU12208ST-7I">7i</A>
Carreira EM.
Acc. Chem. Res.
2000,
33:
373 ; and references therein
<A NAME="RU12208ST-8A">8a</A>
Zhou L.
Jiang H.-F.
Li C.-J.
Adv. Synth. Catal.
2008,
350:
2226
For our works on silver- and gold-catalyzed hydroamination
of alkynes, see:
<A NAME="RU12208ST-8B">8b</A>
Luo Y.
Li Z.
Li C.-J.
Org.
Lett.
2005,
7:
2675
<A NAME="RU12208ST-8C">8c</A>
Zhang Y.
Donahue JP.
Li C.-J.
Org.
Lett.
2007,
9:
627
For references on copper-catalyzed
intermolecular hydroamination of olefins, see:
<A NAME="RU12208ST-9A">9a</A>
Munro-Leighton C.
Blue ED.
Gunnoe TB.
J. Am. Chem. Soc.
2006,
128:
1446
<A NAME="RU12208ST-9B">9b</A>
Taylor J.
Whittall N.
Hii K.-K.
Org.
Lett.
2006,
8:
3561
For recent examples, see:
<A NAME="RU12208ST-10A">10a</A>
Katagiri T.
Tsurugi H.
Satoh T.
Miura M.
Chem. Commun.
2008,
3405
<A NAME="RU12208ST-10B">10b</A>
Nishimura T.
Guo X.-X.
Ohnishi K.
Hayashi T.
Adv. Synth. Catal.
2007,
349:
2669
<A NAME="RU12208ST-10C">10c</A>
Tsukada N.
Ninomiya S.
Aoyama Y.
Inoue Y.
Org. Lett.
2007,
9:
2919
<A NAME="RU12208ST-10D">10d</A>
Weng W.
Guo C.
Celenligil-Cetin R.
Foxman BM.
Ozerov OV.
Chem. Commun.
2006,
197
<A NAME="RU12208ST-10E">10e</A>
Munro-Leighton C.
Delp SA.
Alsop NM.
Blue ED.
Gunnoe TB.
Chem. Commun.
2008,
111
<A NAME="RU12208ST-11A">11a</A>
Zani L.
Eichhorn T.
Bolm C.
Chem. Eur. J.
2007,
13:
2587
<A NAME="RU12208ST-11B">11b</A>
Aschwanden P.
Stephenson CRJ.
Carreira
EM.
Org. Lett.
2006,
8:
2437
<A NAME="RU12208ST-12">12</A>
Representative
Experimental Procedure
Copper(I) bromide (3.6 mg,
0.025 mmol, 5 mol%) was suspended in toluene (2 mL) in
a 10 mL Schlenk tube under nitrogen. Then, diallylamine (49 mg,
0.5 mmol) and phenylacetylene (204 mg, 2 mmol) were added. The resulting
solution was stirred at 100 ˚C for 24 h. After cooling
to r.t., the resulting mixture was filtered through a short path
of SiO2 in a pipette eluting with EtOAc. The volatiles
were removed in vacuo, and the residue was purified by column chromatography
(SiO2, hexane-EtOAc, 10:1) to give 3a (111.3 mg, 74%) as a pale yellow
oil. ¹H NMR (400 MHz, CDCl3): δ = 7.42-7.39
(m, 2 H), 7.31-7.23 (m, 8 H), 5.88-5.79 (m, 2
H), 5.23 (d, J = 17.2
Hz, 2 H), 5.13 (d, J = 10.0
Hz, 2 H), 3.97 (t, J = 7.6
Hz, 1 H), 3.41(dt, J = 14.0,
2.4 Hz, 2 H), 3.11-2.97 (m, 4 H). ¹³C
NMR (75 MHz, CDCl3): δ = 139.0, 136.6,
131.8, 129.7, 128.4, 128.3, 128.1, 126.5, 123.6, 117.5, 87.7, 86.2,
55.4, 54.3, 40.6. MS (70 eV): m/z (%) = 301 [M+],
274, 242, 215, 210(100), 191, 168, 154, 128, 115, 91. HRMS (EI): m/z calcd for C22H23N [M+]:
301.1831; found: 301.1814.
The experiments in Table
[²]
were carried out analogously.
All products were purified by column chromatography and characterized
by NMR spectroscopy and standard/high-resolution mass spectrometry.